Exercise 13

Dinosaur fossils are often dated by using an element other than carbon, such as potassium-40, that has a longer half-life (in this case, approximately 1.25 billion years). Suppose the minimum detectable amount is 0.1% and a dinosaur is dated with ${ }^{40} \mathrm{~K}$ to be 68 million years old. Is such a dating possible? In other words, what is the maximum age of a fossil that we could date using ${ }^{40} \mathrm{~K}$?

Solution

Assume that the rate of mass decay is proportional to the amount of mass remaining at any given time.

$$
\frac{d m}{d t} \propto-m
$$

There's a minus sign here because mass is being lost as time increases. Change the proportionality to an equation by introducing a (positive) constant k.

$$
\frac{d m}{d t}=-k m
$$

Divide both sides by m.

$$
\frac{1}{m} \frac{d m}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln m=-k
$$

The function you have to differentiate to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln m=-k t+C
$$

Exponentiate both sides.

$$
\begin{aligned}
& e^{\ln m}=e^{-k t+C} \\
& m(t)=e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant m_{0} for e^{C}.

$$
\begin{equation*}
m(t)=m_{0} e^{-k t} \tag{1}
\end{equation*}
$$

The half-life is defined as the amount of time it takes for a sample to decay to half its mass, so set $m\left(1.25 \times 10^{9}\right)=m_{0} / 2$ and solve the equation for k.

$$
\begin{gathered}
m\left(1.25 \times 10^{9}\right)=\frac{m_{0}}{2} \\
m_{0} e^{-k\left(1.25 \times 10^{9}\right)}=\frac{m_{0}}{2} \\
e^{-1.25 \times 10^{9} k}=\frac{1}{2} \\
\ln e^{-1.25 \times 10^{9} k}=\ln \frac{1}{2} \\
\left(-1.25 \times 10^{9} k\right) \ln e=-\ln 2 \\
k=\frac{\ln 2}{1.25 \times 10^{9}} \approx 5.54518 \times 10^{-10} \mathrm{year}^{-1}
\end{gathered}
$$

As a result, equation (1) becomes

$$
\begin{aligned}
m(t) & =m_{0} e^{-\left(\frac{\ln 2}{1.25 \times 10^{9}}\right) t} \\
& =m_{0} e^{\ln 2^{-t /\left(1.25 \times 10^{9}\right)}} \\
& =m_{0}(2)^{-t /\left(1.25 \times 10^{9}\right)} .
\end{aligned}
$$

To find how long it takes for the ${ }^{40} \mathrm{~K}$ to reduce to 0.1% of its original amount, set $m(t)=0.001 m_{0}$ and solve the equation for t.

$$
\begin{gathered}
m(t)=0.001 m_{0} \\
m_{0}(2)^{-t /\left(1.25 \times 10^{9}\right)}=0.001 m_{0} \\
2^{-t /\left(1.25 \times 10^{9}\right)}=0.001 \\
\ln 2^{-t /\left(1.25 \times 10^{9}\right)}=\ln 0.001 \\
\left(-\frac{t}{1.25 \times 10^{9}}\right) \ln 2=\ln 0.001 \\
t=-\frac{1.25 \times 10^{9} \ln 0.001}{\ln 2} \approx 1.24572 \times 10^{10} \text { years }
\end{gathered}
$$

This is the maximum age of a fossil that can be dated with ${ }^{40} \mathrm{~K}$ if the minimum detectable amount is 0.1%. A dinosaur fossil that's 6.8×10^{7} years old can be dated with this isotope.

